聊天机器人 2016

作为一名程序员,我希望机器能做的事情就不要让人去做。我相信分享能促进创造,不断的创造会让人更加有智慧。毕竟随着年龄的增长,不再具有年轻时的体魄,更要靠大脑做事。我总是希望自己的工作的内容是创新的,流程是自动的,效率是恐怖的。那要怎样才能实现这个目标呢?

马克思说:人的本质是社会关系的总和,科学技术是人体器官的延伸。我们可以将这句话分别理解一下:

人的本质是社会关系的总和

Organizations which design systems are constrained to produce systems which are copies of the communication structures of these organizations. – M.E. Conway

上面这句话是康威理论,它阐明了这样一个道理:任何软件公司生产的软件,都是该公司内部程序员沟通方式的映射。这个结论的依据是程序员之间沟通方式决定了软件接口的定义。这就是为什么很多成功的公司强调在项目开发之前,要大家“搞好关系”。这也可以说明,为什么成功的人,一般不是才华横溢的人,而是最能以亲切和蔼的态度给人以好感的人。

微信之父张小龙曾回答过“微信是什么”这个问题,他说一千个用户有一千个微信,在他自己眼里,微信就是一个I/O系统,里面有两张表:User, Message.

科学技术是人体器官的延伸

Gmail作为全世界最优秀的邮箱,一直长期使用Beta版本,不断尝试通过提供智能服务,提高用户处理邮件的效率。2015年,Gmail推出了Smart Reply功能。它能够自动生成回复消息,用户只需要Tap一下,完成邮件的快速回复,目前可以处理全部邮件的10%。

所以,作为一个技术型创业者,不应该从产品入手,而应该从释放人的自由和活力入手。Smart Reply使用了三层逻辑:

  • 判断这个邮件是否可以使用Smart Reply – 使用深度学习

  • 查询出几项具备不同意向的候选回复方案 – 使用知识图谱

  • 将候选方案进行打分 – 使用深度学习

所以,Gmail成功解决了如何整理历史知识,如何查询备选方案,如何给备选方案打分。那么这种技术就很有前途了。

传统的软件都是以同样的输入对应确定的输出为基础的,可是深度神经网络是处理不确定的输入,给出一个按概率分布的输出。

神经元的sigmod激活函数:

一个神经元网络:

深度神经网络可以模拟任何函数:

重新思考聊天机器人

  • 什么能最大化的接触到人的关系?

社交网络,即时通讯工具。

  • 什么能最高效的处理繁杂的,信息爆炸后的数据?

深度神经网络。

所以,作为一个程序员,我觉得做一个聊天机器人,是我能想到的,最好的工作。

在2016年7月份,我曾做过一个分享。Key Notes -








本系列文章

参考文献

Conway’s Law

Gmail Smart Reply

A visual proof that neural nets can compute any function

交往与人的发展:基于马克思主义的视角

王海良@Chatopera 聊天机器人 机器学习 智能客服
Chatopera 联合创始人 & CEO,运营聊天机器人平台 https://bot.chatopera.com,让聊天机器人上线!2015年开始探索聊天机器人的商业应用,实现基于自然语言交互的流程引擎、语音识别、自然语言理解,2018年出版《智能问答与深度学习》一书。