聊天机器人之实体命名标识和槽位取值的关系

在对话系统中,对NLP中的实体命名标识和NLU中的槽位取值,进行介绍。

sequence-tagging可以帮助解决:实体命名和槽位取值问题。

TaskDatasetExample
NERCoNLL 2003link
Slot fillingATISlink

sequence-tagging 是带有目的性的从一段文字中寻找信息。

  • 实体命名

寻找人名、地名、组织结构或其他专有名词。

  • 槽位取值

寻找关系,问题类型或其他信息。通常,槽位取值使用模版,输出结果便于下一步在知识库中寻找对应的信息。

Refers

What is the difference between slot filling in NLU and named entity recognition in NLP?

Knowledge Base Population

Sequence Labeling

王海良@Chatopera 聊天机器人 机器学习 智能客服
Chatopera 联合创始人 & CEO,运营聊天机器人平台 https://bot.chatopera.com,让聊天机器人上线!2015年开始探索聊天机器人的商业应用,实现基于自然语言交互的流程引擎、语音识别、自然语言理解,2018年出版《智能问答与深度学习》一书。