深度学习:调节网络超参数

使用神经网络完成分类,物体识别,序列化标注,问答,生成式对话、翻译、摘要已成为标准手段,在训练神经网络时,一个很难的地方是怎么调试网络的超参数,超参数影响了网络的收敛速度,也影响最终的结果。

我们假设数据和算法都定了,数据也准备好了。这时候,在网络初始化阶段,Weights和Biases是随机初始化的。那么还剩下一些参数,比如隐含层的设计、mini batch size、learning rate。调试超参数是使用控制变量法,以下是一些参考建议:

使用一个规模比较小的数据集来调试超参数

在常见的规范的开放数据集中,都是将数据集分成三份:train, test和validation。

train就是训练时候使用的,test是作为最终评测使用的,而validation就是用作调试超参数的。train和validation 也被称为开发数据集。有的数据集不设validation数据集,是因为数据量小,通常可以用train数据集做调试超参数。

所以,假设我们有了一个validation数据集,这个数据集数据不易太多,因为数据越多,越需要多次迭代才能看到超参数的效果,需要的时间就越长:在Fitting阶段,需要比较不同参数下损失变化的曲线和精度的值。

调试 learning rate

在其它超参数保持不变的情况下,改变学习率,比如从0.0001开始,然后顺序选择0.001, 0.01, 0.05, 0.1, 0.5。然后比较不同学习率下损失函数的曲线增长或减少的幅度。我们可以找到一个区间,也就是在这个区间内,损失函数的波形是稳定下降的,不会发生振荡。那么,取这个区间内的值就可以。

调试 batch size

在其它超参数保持不变的情况下,改变batch size, 比如依次选择20, 50, 100, 200。然后比较不同batch size下,能使准确率变化最陡的值。准确率变化越陡,证明参数学习收敛越快,

调试 隐含层

在其它超参数保持不变的情况下,改变隐含层层数或每层神经元多少,选择能取得最高的准确率的值。

总结

调节超参数使用控制变量法,按照上述顺序进行。

王海良@Chatopera 聊天机器人 机器学习 智能客服
Chatopera 联合创始人 & CEO,运营聊天机器人平台 https://bot.chatopera.com,让聊天机器人上线!2015年开始探索聊天机器人的商业应用,实现基于自然语言交互的流程引擎、语音识别、自然语言理解,2018年出版《智能问答与深度学习》一书。