Chatopera

为企业交付智能客服系统、智能对话机器人、机器人客服、Chatbot。北京华夏春松科技有限公司
官网Chatopera 云服务文档中心开源技术产品更新日志
私信 关注
Chatopera 研发团队
码龄12年

https://www.chatopera.com 北京华夏春松科技有限公司:为企业交付智能客服系统、智能对话机器人、机器人客服、Chatbot。

  • 988,456
    被访问量
  • 484
    原创文章
  • 2,064
    作者排名
  • 448
    粉丝数量
  • 于 2009-02-08 加入CSDN
获得成就
  • 获得132次点赞
  • 内容获得261次评论
  • 获得415次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #算法#神经网络#深度学习#自然语言处理#语音识别
TA的专栏
  • 开源
    473篇
  • 聊天机器人
    92篇
  • 智能客服
    25篇
快速获得好用的开源智能客服系统
春松客服
watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dhdHNvbjI0MzY3MQ==,size_16,color_FFFFFF,t_70 扫一扫 加入用户交流群

寻找开发者合作智能客服项目
支持开源软件:给春松客服 点赞(star)
cskefu.svg?style=social&label=Star&maxAge=2592000 cskefu.svg?style=social&label=Fork&maxAge=2592000

cskefu.svg cskefu.svg
cskefu.svg cskefu.svg
contact-center.svg contact-center:develop.svg
contact-center.svg contact-center:develop.svg
watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dhdHNvbjI0MzY3MQ==,size_16,color_FFFFFF,t_70
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

Chatopera_开会法_2021_02.pptx

让开会变得更有效
pptx
发布资源于 23 小时前

见解深刻的人工智能书籍,《智能问答与深度学习》加速自然语言理解技术普及 | Chatopera

风雨送春归,飞雪迎春到。已是悬崖百丈冰,犹有花枝俏。俏也不争春,只把春来报。待到山花烂漫时,她在丛中笑。《智能问答与深度学习》一书,入选京东好物”见解深刻的人工智能精选“书籍,截至目前本书共获得 7,688 条评价,98% 好评率,大家对本书最多的评价就是对经典算法的详细说明,引用大量公式,对人工智能、信息论和通信原理之间关系的阐明,以下节选一些网友评价。网友A:该书介绍了近年来自然语言处理和机器阅读的成果,带有翔实的示例,对实际应用有很好的借鉴意义。由浅入深地介绍了人工智能在文本任务中的应用。网友
原创
30阅读
0评论
0点赞
发布博客于 昨天

如何经营好 Facebook 主页,吸引粉丝和维护客户关系 | 春松客服

目录走,出海去客户生命周期Facebook 主页获取粉丝Facebook 主页设计Facebook OTN 通知客户服务支持 Facebook 主页作为渠道春松客服里使用 OTN集成机器人客服欢迎垂询走,出海去中国制造,誉满全球,越来越多的企业想要走出去,国内很多行业竞争激烈,在饱和态下,出海成为了不错的选择。怎样有效的运用 Facebook 获得海量客户,是摆在出海企业面前一个现实的问题。Facebook 为企业提供全面的拓展客户服务,春松客服则致力于为客户提供好用的开源客服系统。今天,我们一起来
原创
63阅读
0评论
0点赞
发布博客于 3 天前

帮助您将产品销往全世界,春松客服支持 Facebook Messenger 渠道 | Chatopera

Facebook MessengerMessenger 是 Facebook 旗下的最主要的即时通信软件,支持多种平台,因其创新的理念、优秀的用户体验和全球最大的社交网络,而广泛应用。通过 Facebook Messenger 的官方链接,可以了解更多。https://www.messenger.com/Facebook Messenger 的月活超过 30亿用户,日活超过 23亿用户。春松客服 Messenger 插件帮助企业在 Facebook 平台上实现营销和客户服务。在 Facebook.
原创
75阅读
0评论
0点赞
发布博客于 3 天前

一山还有一山高,开源智能客服系统春松客服 v7 版本发布 | Chatopera

贺岁版现在是2021年2月10日 22点 23 分,距离农历新春佳节的新年钟声只有近24小时之际,Chatopera 团队针对春松客服的新版本 v7 的系统测试也接近尾声,今天已经发布了 10 余个候选 v7 发布版本。在该版本中,前端开发的效率比之前提高了 10倍!整个春松客服的前端得到了彻底的重构,数十万行代码被重写:使用 PugJS 重构 Freemarker 相关,达到彻底替换的目的。现在,开源社区的开发者们,可以基于 v7 来定制您的客服系统了!敬请使用春松客服 v7 tag on.
原创
1545阅读
3评论
2点赞
发布博客于 15 天前

Feishu(飞书) 聊天机器人应用(3/3)- DevOps 机器人助手,管理 GitLab Issues,BOT 开源示例程序

目录DevOps 机器人助手命令示例配置使用创建机器人设置环境变量GITLAB_URLPRIVATE_TOKENVALID_PROJECTS修改对话使用帮助本系列文章在上一篇文章:Feishu(飞书) 聊天机器人应用(2/2)- 定制对话,实现知识库、信息查询、意图识别、多轮对话,详细的梳理了应用飞书开放平台,开发者中心,上线 Custom App 的过程,并且导入了对话机器人,以飞书作为 渠道,以 Chatopera 机器人平台管理对话,本文则继续关注在飞书上线机器人系列,讲述如何为机器人增加对话,并且
原创
274阅读
2评论
0点赞
发布博客于 17 天前

Feishu(飞书) 聊天机器人应用(2/3)- 定制对话,实现知识库、信息查询、意图识别、多轮对话

目录Chatopera 飞书 Custom App开源项目快速开始创建 Feishu Bot 应用创建 Chatopera Bot 应用编辑描述文件安装依赖启动服务配置 Feishu Custom App 消息事件订阅发布上线机器人开发获得帮助与支持References开源许可协议本系列飞书应用开发的上一篇文章Feishu(飞书) 聊天机器人应用(1/2)- 开发快速入门,本文侧重结合飞书和 Chatopera 服务上线智能对话机器人应用。在前一篇文章中,重点介绍了在飞书群里使用 Custom Bot,
原创
323阅读
0评论
0点赞
发布博客于 20 天前

标准化智能对话机器人开发,Chatopera 云服务做到了 | Chatopera 让聊天机器人上线

人们在期盼着人工智能时代,人机交互的新纪元的到来,这会影响我们的生活方方面向,对于企业而言,正在迎来大规模自动化的浪潮。基于自然语言的人机对话,是这个浪潮中的 Killer App 吗?Chatopera 相信。Chatopera 推出标准化开发工具,帮助开发者和企业定制聊天机器人。Chatopera 机器人平台的深度介绍,在一个小时内,入门智能对话机器人开发 定制智能对话机器人 Chatbot,使用 Chatopera
原创
143阅读
0评论
0点赞
发布博客于 29 天前

2020 中国开源年度报告

1、报告背景2016 年初,开源社发布了《2015 年中国开源社区参会调查报告》,随后的几年中,持续发布了开发者调查报告,旨在从多种维度呈现国内的开源发展情况。今年我们再次启程,结合数据分析手段和调查报告等多种形式,绘制一份 2020 年中国开源世界的地图。这份问卷是每年中国开源年报的重要一环,不基于调研的分析报告不过是纸上谈兵。在往年的基础上,我们参考了其他现存的主流开发者问卷内容,并加入了一些新的视角。基于 2020 年 COVID-19 这个不容忽视的大背景,这份调查问卷进一步将视角发散到开源世界
转载
130阅读
0评论
0点赞
发布博客于 1 月前

Java中判断字符串是否相等

Java中判断字符串是否相等在代码中,我们经常使用 == 双等号的表达式来判断两个字符串是否相等。但是在Java中,却不能这样写。原因Java中,使用==比较字符串时,判断的是两个字符串是否存放在相同的位置。如果两个字符串存放在相同的位置,那么它们就是相同的,使用==比较的结果也就是True。但Java虚拟机并不总是使两个相同的字符串共享一个位置,它可能会存放多个相同的拷贝在不同的位置。只有通过字面赋值的时候,相同的字符串才会共享位置,例如:String str1="abcde";String
原创
1452阅读
21评论
23点赞
发布博客于 1 月前

火狐浏览器中pandding-bottom无效的问题

火狐浏览器中pandding-bottom无效的问题问题描述导致原因解决方案问题描述最近在项目开发中遇到一个奇怪的问题,当我使用 padding-bottom:100px 在页面底部,高度为100px。在Chrome上显示正常:但是在火狐浏览器中,却不起作用:造成的现象就是有一部分内容展示不出来。导致原因一番查询之后,是因为火狐和ie浏览器会出现‘吞吃’的情况,当节点的内容超过了自身高度,此时还给节点设置了overflow:auto;的话,overflow属性会将超出的部分剪裁到paddin
原创
69阅读
0评论
0点赞
发布博客于 1 月前

重点研发智能对话机器人,Chatopera 荣获国家高新技术企业认证

2020年,华夏春松申请国家高新科技企业认证,并在科委有关负责人的线下筛查中,核对了2018年度和2019年度的项目立项、合同、知识产权和研发经费等材料,并于近期获得了通过该认证的通知。华夏春松将以此为新起点,继续奋斗、追求卓越,用更好更多的产品回报社会!...
原创
132阅读
0评论
0点赞
发布博客于 1 月前

中文近义词工具包,Synonyms 发布新版本 v3.16,支持词汇表扩大至 40w+

https://github.com/chatopera/Synonyms增大词向量到 40W+ 词汇,优化下载速度。自从 Synonyms 发布以来,得到开源社区用户的关注,在 GitHub 上下载、交流和贡献 PR。Synonyms 对各种自然语言处理任务都有帮助,比如聚类分析、自动摘要、搜索、知识图谱和智能对话机器人、聊天机器人等。在 GitHub 被近百个项目标识使用了 Synonyms,以及上百个反馈 Issue,对此 Chatopera 团队非常感谢给予贡献和反馈建议的各位开源朋友!近期
原创
219阅读
6评论
1点赞
发布博客于 1 月前

项目规划中的Epic、Feature、Story和Task的关系

项目规划中的Epic、Feature、Story和Task的关系在敏捷项目的估算或计划时,我们常提到以下几个概念。Epic StoryFeatureMinimal Marketable Feature (MMF)ThemeUser StoryTask  本文将说明这几个概念的意义和他们间的关系。  1. Feature  Feature是可以为顾客提供价值的东西,它代表一个产品可以做什么,或提供什么服务;是可以满足用户的需求,为客户服务,为用户带来真正的价值的成果物的特性。  Fea
转载
308阅读
0评论
0点赞
发布博客于 1 月前

智能对话机器人:自然语言处理与人机交互

这是一部讲解如何基于NLP技术和人机交互技术实现聊天机器人的著作。两位作者聊天机器人领域均有多年大型项目的实战经验,这本书不仅讲解了NLP和人机交互的核心技术,而且从技术、算法、实战3个维度讲解聊天机器人的原理、实现与工程实践。《会话式AI:自然语言处理与人机交互》有3个特点:前瞻性强,专注于NLP和人机交互的前沿技术,以及会话式AI技术在热门场景中的工程实践。实战性强,每章都提供实战代码,大部分代码简单修改后便可在实际场景中使用;数据集并非简单构造,而是具有真实性。对比性强,结合应用场景,对比
转载
138阅读
0评论
0点赞
发布博客于 1 月前

如何对智能对话机器人的智能化水平分类

目录5 个等级L1 单向推送L2 单轮问答L3 多轮对话L4 个性化对话L5 多机器人协作参考文档5 个等级L1 单向推送机器人可向用户推送消息,但没有对话能力。L1级别的对话机器人,只具备向用户单向推送的能力。今天,我们所使用的App、微信公众号都会使用这种方式与用户交互。这种方式的好处是受众广,效率高;缺点是用户只能被动接收推送,无法和机器人进行对话交互。因此,L1级别的机器人在严格意义上不能被称为“对话机器人”。L2 单轮问答机器人能回答用户的常见问题,但没有上下文理解能力,无法主动与
转载
115阅读
0评论
0点赞
发布博客于 1 月前

Feishu(飞书) 聊天机器人应用(1/3)- 开发快速入门

目录注册飞书创建 APP申请权限发布新版本激活并配置获得组织成员信息获得 access token获得用户的 open_id创建 BOT推送纯文本消息推送富文本消息发布给所有飞书用户参考文档注册飞书注册为飞书用户,创建组织https://www.feishu.cn/成为飞书开发者https://open.feishu.cn/?lang=en-US创建 APP申请权限加入我们要开发 Chatbot, 获得管理组织信息。在 Permissions 相关区域选择对应的权限,这时会提示
原创
1251阅读
8评论
3点赞
发布博客于 1 月前

location对象的属性与方法

location对象详解Location 对象Location 对象属性Location 对象方法location.assign()location.replace()location.reload()location.href 兼容性问题最近在项目开发中遇到了一个问题,客户的需求是要根据URL中传入的不同参数来显示相对应的客服名称和头像。想要获取到URL可以通过 window.location 的方式,在解决这个问题的过程中,我学到了很知识,在此分享给大家。Location 对象Location
原创
3952阅读
15评论
1点赞
发布博客于 1 月前

Jetbrains IDEA 中修正 Pug 文件编辑自动提示错误

IDEA 编辑器打开 Pug 文件,默认情况下,对 CSS 中的文件路径检查形成了错误提示,但是该错误提示是不合理的,因为该文件路径可能和硬盘的相对路径不一致。解决方案是重新设置检查规则。点击保存。这样就放弃了对 CSS 中引用文件的检查,因为这个检查的路径和实际使用的并不一致,就没有起到检查的效果,需要在 FVT(功能测试)去测试该项规则。...
原创
76阅读
0评论
0点赞
发布博客于 2 月前

Chatopera 张凯:创业的信念,为了小家和大家

目录背景第一步 准备第二步 起航第三步 归来总结本文作者背景时光飞逝,创业两年,流金岁月,2020年7月份我在网上偶然听到一个故事。有个高三学生在高考最后几个月差点放弃高考,但是最终又重回高考队伍,还考上了比较好的大学。为何能转折,据他说,受到一个"奇人"点拨。那位同学说在高考最后几个月他厌烦了念书,美好的青春浪费在天天刷题上,感觉脑子出了毛病,给家里写了封信便辍学了。要出去走走,徒步旅行。他从湖北荆州走到了湖南长沙,回来时与乞丐无异发须很长。这些都是由于他在那年遇到了一个"神人",徒步中国旅行者雷殿
原创
386阅读
10评论
0点赞
发布博客于 2 月前

Pug字符串的嵌入与转义

pug的嵌入与转义普通变量嵌入Js表达式嵌入标签嵌入字符串嵌入,不转义为什么要使用!{}使用 !{}的风险普通变量嵌入设置的普通变量嵌入模版//变量- var msg = "打篮球";- var name = "小明";- var theGreat = "<span>运动</span>"; //使用 = 或者 #{} 嵌入p= msgp #{name} 喜欢 #{msg}p 这是安全的:#{theGreat}等价于<h1>打篮球</h1&
原创
133阅读
0评论
0点赞
发布博客于 2 月前

对话式服务思考,如何在 Messenger 用聊天机器人做好客户服务

目录有没有这样的经历设计聊天机器人的定位和画像聊天机器人的对话结构新手引导和帮助添加对话能力添加产品介绍添加业务联系添加体验技能处理错误示例程序接下来有没有这样的经历作为一位在 Facebook 的用户,阿成也经常在 Facebook 上获得游戏的介绍信息,阿成经常在休闲时刻玩一会,通过这些游戏,阿成认识了一些朋友,让生活更有趣。一天阿成看到了一个朋友分享的游戏介绍,这款游戏很吸引阿成,于是他打开了这款游戏的 Facebook Page,阿成想了解游戏的角色和玩法,这时他点击了“发消息”,发送了咨询问题
原创
197阅读
0评论
0点赞
发布博客于 2 月前

开源项目 Chatopera FMC, 快速构建 Facebook Messenger 聊天机器人服务,让聊天机器人上线!

Facebook Messenger 是一个即时通信软件,聊天机器人服务是 Messenger 很重要的组成部分,也是有别于其它 IM 软件的一个亮点,为用户和企业带来了很多创新的机会。如何使用开源项目,来上线 Messenger 的 Chatbot 服务呢?Chatopera 推出 Chatopera FMC,即 Facebook Messenger Connector for Chatopera 来完成这个目的。项目地址:https://github.com/chatopera/chatop
原创
318阅读
2评论
1点赞
发布博客于 2 月前

从工程师到创业者 Chatopera 联合创始人 王海良 | 哈尔滨工业大学10月28日专场预告

本视频介绍如何以工程师为起点走上创业者的道路。分享嘉宾Chatopera 联合创始人 & CEO 王海良,2011 年毕业于北京邮电大学,后加入 IBM 工作四年,先后工作于软件开发实验室和创新中心。从 2016 年开始工作于创业公司,三角兽 AI 算法工程师,呤呤英语 AI 产品负责人,负责智能对话系统研发。具有丰富的项目落地经验,熟悉机器学习,搜索引擎,自然语言处理,业务流程引擎。2018 年出版行业首本问答对话机器学习书籍《智能问答与深度学习》。
原创
293阅读
1评论
2点赞
发布博客于 3 月前

权限管理大升级,开源智能客服系统春松客服 v6 版本发布 | Chatopera

开源项目地址: Gitee | CodeChina | GitHub官方博客: https://blog.chatopera.com/立冬刚过,天气转寒,春松客服研发群里却是紧张热闹,预期在 6 月份发布的春松客服 2020 年大版本更新直至此时才接近发布要求,为了中小型企业可以获得物美价廉的智能客服系统,春松客服研发人员焚膏继晷,废寝忘食,随时准备测试和解决问题。此次更新也是 Chatopera 承诺的,让春松客服更好的支持多租户需求,我们根据一些用户的反馈,在 v6 中实现了管理员分为超级管理员和.
原创
2252阅读
10评论
1点赞
发布博客于 3 月前

聊天机器人之网页测试程序 Chatopera Test Client

Chatopera/webchatGitee | CodeChina | GitHub本开源项目发布Node.js, React 程序,完成使用 Web 浏览器连接 Chatopera 机器人平台,和聊天机器人对话。本程序发布的目的,主要是在集成聊天机器人时,作为示例程序参考。Featured提供对话页面,方便系统集成测试使用 Bot Provider 地址,clientId 和 secret 连接机器人实现 Dialogue Management: 融合意图识别检索、多轮对话检索和知识库检
原创
594阅读
2评论
1点赞
发布博客于 3 月前

【直播】在 Chatopera 云服务定制您的聊天机器人

活动介绍时间: 2020-11-06 19:30- 21:30形式与地点: ZOOM 线上会议组织:Bot Friday分享人王海良个人简介:Chatopera 联合创始人 & CEO,运营 Chatopera 聊天机器人平台,https://bot.chatopera.com。2011 年毕业于北京邮电大学,后加入 IBM 工作四年,先后工作于软件开发实验室和创新中心。从 2016 年开始工作于创业公司,三角兽 AI 算法工程师,呤呤英语 AI 产品负责人,负责智能对话系统研发。分
原创
400阅读
1评论
1点赞
发布博客于 3 月前

积极为开发者提供开源客服系统,春松客服得到有味生活3D商城认可

日前,Chatopera 团队联系了一些在线上使用春松客服系统的企业开发者,同他们更近距离的交流后,Chatopera 得到了很多反馈,这有利于进一步优化春松客服,同时增强了社区用户们对 Chatopera 团队将春松客服打造为最受企业喜爱的智能客服系统的理解,一道努力,这些谈话让 Chatopera 团队和用户们联系更紧密,我们今天来分享有味生活3D商城的客服系统工程师刘勇介绍他们应用春松客服的那些事。有味生活3D商城结合 Unity3D 引擎技术,运用 5G、AI 等新兴科技,让用户在 3D 虚拟的
原创
177阅读
2评论
0点赞
发布博客于 3 月前

聊天机器人之 BERT4Rec, 使用Bert进行序列推荐

目录0. 本文概览1. BERT4Rec简介2. 背景3. BERT4Rec模型介绍3.1 问题定义3.2 模型结构3.4 Embedding层3.5 Output层3.6 模型训练和预测4. 实验5. 个人感悟6. Reference0. 本文概览今天给大家介绍一篇BERT用于推荐系统的文章,题目是《BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer》,文章作者都
转载
488阅读
1评论
0点赞
发布博客于 4 月前

透过Gartner 2020年人工智能技术成熟度曲线看新的变化

2020 企业在 AI 方面的投资根据Gartner最近的一项调查显示,自疫情爆发以来,有47%的企业组织在人工智能(AI)方面的投资维持不变,有30%的企业组织计划增加AI投资。30%的CEO表示,所在的企业组织已经有 AI 项目,并定期重新定义资源、报告结构和系统,以确保项目取得成功。尽管存在更大的经济和社会不确定性,但医疗、生物科学、制造、金融服务、供应链等领域的 AI 项目仍将继续加速发展。今年Gartner的AI技术成熟度曲线包含了5个新技术类别:小数据、生成型AI、复合型AI、负责任的A
转载
731阅读
0评论
0点赞
发布博客于 4 月前

Rasa 中文聊天机器人项目

Rasa 中文聊天机器人项目RASA 开发中文指南系列博文:Rasa中文聊天机器人开发指南(1):入门篇Rasa中文聊天机器人开发指南(2):NLU篇Rasa中文聊天机器人开发指南(3):Core篇Rasa中文聊天机器人开发指南(4):RasaX篇Rasa中文聊天机器人开发指南(5):Action篇注:本系列博客翻译自Rasa官方文档,并融合了自己的理解和项目实战,同时对文档中涉及到的技术点进行了一定程度的扩展,目的是为了更好的理解Rasa工作机制。与本系列博文配套的项目GitHub地址
转载
427阅读
0评论
1点赞
发布博客于 4 月前

聊天机器人设计思考

本文在转载过程中,在原文基础上略有调整,不代表原文观点目录Conversational Robot名词解释(非专业,非官方,非权威)对话系统(dialogue system / dialog system)问答系统(question answering system)问答对(QA pairs)基于知识的问答(knowledge based QA)基于检索的问答(Retrival-based QA)一个简单搜索回答的流程其他类型问答聊天机器人(chatbot)DeepQA人工智能标记语言,AIML基于深.
转载
320阅读
0评论
0点赞
发布博客于 4 月前

开源语义理解框架 Clause API 文档:快速实现聊天机器人

在上一篇文章《基于开源语义理解框架 Clause 实现聊天机器人》 中,很多读者关心如何使用 Clause,在 Clause Wiki 文档中心 中也有很多指导使用的资料,现将 API 使用整理如下。开源语义理解框架 Clause API 文档Clause 使用过程:服务端为 C++ 实现,并基于 Apache Thrift 框架实现跨语言 PRC SDK。服务端已经封装为 Docker 镜像编排服务,部署简单。 SDK 支持多种语言,参考 示例程序。Table of contents服
原创
2155阅读
5评论
11点赞
发布博客于 4 月前

Clause 开发技能之 CMake 进阶教程(一)

开源语义理解项目 Clause 的基本开发技能就是围绕 C++ 的工程展开,使用 CMake 管理依赖,项目描述。需要掌握 CMake,C++。https://github.com/chatopera/clauseClause 使用了很多好的开源的 C++ 的项目的经验,初学 C++ 需要自行研究。以下文章对一些基础知识进行概述。目录CMake 快速开始一键执行基础知识示例程序t1t2t3t4t5t6执行全部示例GUI使用 Docker 容器实战进阶本系列文章CMake 快速开始快速开始使用 C
原创
994阅读
5评论
8点赞
发布博客于 4 月前

Clause 开发技能之 CMake 进阶教程(三)

书接上文:https://chatopera.blog.csdn.net/article/details/109025400本文转载自【使用 CMake 组织 C++工程】3:CMake 函数和宏前言这篇文章分享一下 CMake 中函数:function, 和宏:macro 的使用。本文先从二者区别说起,由于二者区别很小,所以后文就仅对函数的用法进行讨论,因为函数有作用域的概念,适用范围更广。后文分享一个很实用的递归函数用于包含指定目录的所有子目录。CMake 中 function 和 macro
原创
115阅读
0评论
1点赞
发布博客于 4 月前

Clause 开发技能之 CMake 进阶教程(二)

开源语义理解项目 Clause 的基本开发技能就是围绕 C++ 的工程展开,使用 CMake 管理依赖,项目描述。需要掌握 CMake,C++。https://github.com/chatopera/clauseClause 使用了很多好的开源的 C++ 的项目的经验,初学 C++ 需要自行研究。以下文章对一些基础知识进行概述。前言这篇文章将介绍一个稍微复杂一些的 CMake 工程,结合这个工程总结一下在组织一个 C/C++工程时最为常用的一些 CMake 命令和变量。对于涉及到的命令和变量,介
原创
151阅读
0评论
0点赞
发布博客于 4 月前

聊天机器人 2017

目录概述聊天机器人聊天机器人模型分类基于检索的模型基于生成的模型长对话和短对话开放领域和封闭领域挑战关联上下文意图识别如何判断一个模型的好坏一种设想问题域Conversation Model低成本的构建对话能区分不同类型的对话规范化输入高效率的规则引擎用户画像开源的脚本引擎对话脚本快速开始未来发展数据预处理中文分词jieba分词的实现自定义字典Word embeddingWord2vecSeq2Seq使用DeepQA2训练语言模型预处理开始训练Model提供服务使用脚本对模型的评价有待改进的地方本系列文章延
原创
596阅读
1评论
0点赞
发布博客于 4 月前

从零开始深度学习:线性代数的基础知识

在使用TensorFlow创建Network过程中,经常涉及包含多少层,多少Weights和Bias的运算。这些是线性代数的基础知识,在学校学过高等数学的人,可以快速的通过下面的链接拾起这方面的知识。矩阵矩阵乘法逆矩阵矩阵的秩更多关于机器学习入门、数学基础,参考 CSDN 学院课程:从零开始深度学习 https://edu.csdn.net/bundled/detail/59?utm_source=tg16...
原创
1126阅读
1评论
5点赞
发布博客于 4 月前

聊天机器人之 RNN, LSTM and Sequence2Sequence 介绍

RNNRNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息。由于其特殊的网络模型结构解决了信息保存的问题。所以RNN对处理时间序列和语言文本序列问题有独特的优势。递归神经网络都具有一连串重复神经网络模块的形式。在标准的RNNs中,这种重复模块有一种非常简单的结构。那么S(t+1) = tanh( U*X(t+1) + W*S(t))。tanh激活函数图像如下:激活函数tanh把状态S值映射到-1和1之间.RNN通过BPTT算
原创
118阅读
0评论
0点赞
发布博客于 4 月前

深度解析TensorFlow组件Estimator:构建自定义Estimator

Have you ever wondered what’s the magic behind the tutorials on Large-scale Linear Modelsand Wide & Deep Learning? I hope this post would at least point you to the right direction.你是否思考过TensorFlow的tutorial和其背后的“魔力”?希望这篇文章至少能给你思考的正确方向。TensorFlow的基本概念可
转载
214阅读
0评论
0点赞
发布博客于 4 月前

聊天机器人活动的精彩视频来了 @ 2016

本篇文章是 2016 年 12月,我组织的一个聊天机器人线下交流活动的总结聊天机器人活动的精彩视频来了!- 6行JavaScript搞定微信机器人(上) -李卓桓, PreAngel天使投资人- 6行JavaScript搞定微信机器人(下) -李佳芮, 小桔机器人创始人- Chatbot的应用场景 -王守崑, 爱因互动创始人兼CEO在历史上,人工智能多次被炒火,我相信,这一次:AI is here to stay.更多本次活动的照片https://github.com/c
原创
105阅读
0评论
0点赞
发布博客于 4 月前

Items and Model Understanding,Tensorflow中的一些概念

介绍tensor, tf.placeholder, tf.flag, tf.name_scope, tf.session 等概念。tensor: Tensors are like geometric vectors, scalars, multidimensional array and other tensors. We can do dot product, the cross product, and linear maps between tensors. The first-order tens
原创
73阅读
0评论
0点赞
发布博客于 4 月前

TensorFlow 多机分布式部署

A brief tutorial on how to do asynchronous and data parallel training using three worker machines.简要介绍如何异步执行训练任务,通过三台服务器运行 TensorFlow 集群。TL;DR;A brief tutorial on how to do asynchronous and data parallel training using three worker machines with each o
原创
182阅读
0评论
0点赞
发布博客于 4 月前

聊天机器人 2016

作为一名程序员,我希望机器能做的事情就不要让人去做。我相信分享能促进创造,不断的创造会让人更加有智慧。毕竟随着年龄的增长,不再具有年轻时的体魄,更要靠大脑做事。我总是希望自己的工作的内容是创新的,流程是自动的,效率是恐怖的。那要怎样才能实现这个目标呢?马克思说:人的本质是社会关系的总和,科学技术是人体器官的延伸。我们可以将这句话分别理解一下:人的本质是社会关系的总和Organizations which design systems are constrained to produce system
原创
89阅读
0评论
0点赞
发布博客于 4 月前

快速开始 tf.contrib.learn

tf.contrib.learn是TensorFlow的高级API库。https://github.com/chatopera/tensorflow-getstartedTL; DRWrite down output of tf.contrib.learn Quickstart from tensorflow.org.git clone git@github.com:chatopera/tensorflow-getstarted.git cd tensorflow-getstarted/tf-c
原创
92阅读
0评论
0点赞
发布博客于 4 月前

Tensorflow tf.app.run 的工作方式

To run a tensorflow app, you define the input, lost fn, model and EvaluationMonitor in a main function in your module like this.执行 TensorFlow 的应用,需要定义输入、输入、网络模型和评估监控在主函数中,主函数要包含上述信息。Like this,举例如下:import tensorflow as tfdef main(unused_argv): hparams
原创
87阅读
0评论
0点赞
发布博客于 4 月前

如何使用 TensorFlow Tensorboard 观察训练,调节参数

A brief and concise tutorial on how to visualize different aspects such as the loss of your neural network using tensorboard.TL;DRA brief and concise tutorial on how to visualize different aspects such as the loss of your neural network using tensorboard
原创
132阅读
0评论
0点赞
发布博客于 4 月前

Resolve segmenter to process Chinese Dialogues with jieba, langid, stanford segmenter

During generating a word2vec model with Chinese data, it is very important to segment the Chinese sentences.在处理中文数据,训练词向量模型时,中文自动分词怎么办?Fortunately, there are some awesome utilities which are introduced online.幸运的是,互联网上有多个开源的工具完成分词。JavaBuilt by Stanfor
原创
102阅读
0评论
0点赞
发布博客于 4 月前

Word embeddings 与相关应用

词向量是将文字数学化的方法。自然语言处理中文本数值化表方法词向量是什么,自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化,NLP中大多是将文本表示为空间向量后再进行处理。离散表示: One-hot比如,语料库:John likes to watch movies. Mary likes too. John also likes to watch football games.由语料库得到字典:{ "John": 1, "likes": 2, "to
原创
126阅读
0评论
0点赞
发布博客于 4 月前

聊天机器人之Ubuntu Dialogue Corpus 聊天语料介绍

Corpus Featureshttps://github.com/chatopera/ubuntu-ranking-dataset-creator此 Ubuntu 语料既有 Dialog State Tracking Challenge 数据集的多次序对话特性,也有类似 Twitter 微博服务上的人类自然对话特点,但是它比 Dialog State Tracking Challenge 数据集大几个数量级。另外,相对于用于机器问答和分析的同等数量级Twitter数据集,Ubuntu 数据是基于特定领
原创
203阅读
1评论
0点赞
发布博客于 4 月前

在亚马逊云服务 AWS 上部署 GPU 加速机器,Ubuntu,机器学习

Launch Linux( ubuntu14.04) GPU Acc machine in AWS"excerpt: "In order to deploy network to train Deep Learning Network, a GPU Enabled machine is required. Fortunately, AWS provides GPU Accelerated Machine.TL; DRIn order to deploy network to train Deep Le
原创
162阅读
0评论
0点赞
发布博客于 4 月前

《打造Facebook》 读书报告

写在前面这是一本好书,作者牛逼的经历、总结在两百页文字中娓娓道来,让那些没有机会见证互联网传奇发生过程的人了解那些故事。读罢此书,难以释手,一定要花些时间总结总结,这既是对本书内容的提炼,也加上我个人的一些观点。这个读书报告分成三部分:目录1/3 一个渴望改变世界的人 - Mark Zuckerberg2/3 黑客创办的公司3/3 创新精神一个渴望改变世界的人塑造一流的企业文化个人成长2/3 黑客创办的公司开发新产品描绘愿景 设置目标搜集想法并排出优先次序跨团队沟通告诉所有可能关心的人设计产品指定项目
原创
254阅读
0评论
0点赞
发布博客于 4 月前

基于开源语义理解框架 Clause 实现聊天机器人

Chatopera Language Understanding Service,Chatopera 语义理解服务https://github.com/chatopera/clauseClause Quick Start Guide / Clause 快速开始Chatopera Language Understanding Service,Chatopera 语义理解服务前提已部署 Clause 服务,参考部署文档下载镜像下载示例代码git clone https://github.c
原创
1920阅读
5评论
11点赞
发布博客于 4 月前

搜集网络上比较好的中文语料库

国内可用免费语料库组织,机构发布国家语委国家语委现代汉语语料库http://www.cncorpus.org/现代汉语通用平衡语料库现在重新开放网络查询了。重开后的在线检索速度更快,功能更强,同时提供检索结果下载。现代汉语语料库在线提供免费检索的语料约2000万字,为分词和词性标注语料。古代汉语语料库http://www.cncorpus.org/login.aspx网站现在还增加了一亿字的古代汉语生语料,研究古代汉语的也可以去查询和下载。同时,还提供了分词、词性标注软件、词频统计、字频统计软件
原创
557阅读
0评论
0点赞
发布博客于 4 月前

中文分词及词性标注

支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义词典、词性标注),命名实体识别(中国人名、音译人名、日本人名、地名、实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析(MaxEnt依存句法分析、CRF依存句法分析)TL;DR启动服务docker pull samurais/hanlp-api:1.0.0docker run -it --rm -p 3002:3000 samurais/hanlp-api:1.0.0访问服务中文分词P
原创
498阅读
0评论
0点赞
发布博客于 4 月前

C++ 正则表达式 boost 使用介绍

正则表达式作为自然语言处理的最基本的操作,给出C++的使用方案。标准库std::regex还没有完全支持,在g++ 4.8.x 中,不能使用。所以,推荐使用boost库,取得更好的兼容性。src#include "boost/regex.hpp"void regexSearch(const std::string& pattern, const std::string& input, std::vector<std::string>& results){
原创
84阅读
0评论
0点赞
发布博客于 4 月前

最大字串问题,C++实现

寻找两个字符串中的最大字串问题,是算法中的经典问题,出现在面试和实际应用中,屡见不鲜。本文给出了C++中的实现。Longest Common Substring最长最大字串问题算法数组前缀树字符编码多字节编码与 Unicode 码ASCII编码char to ascii int valueScanning ASCII value of each character of a stringascii对照表ascii为负数的情况Usagestd::
原创
69阅读
0评论
0点赞
发布博客于 4 月前

词频和逆文档频率算法 TF-IDF

词频和逆文档频率算法简单快速,结果处理符合实际情况,可以用在关键词提取,信息检索等很多地方。如果我们有一篇很长的文章,如何获得关键词呢?根据信息熵理论,一个词出现的次数越多,这个词包含的信息量就越小。可以说,TF-IDF算法就是基于这一理论的。这篇文章我们称之为Document, 这篇文章属于一个 Collection(集合)。TF, Term Frequency, 词频IDF, Inverse Document Frequency, 逆文档频率处理将Document进行分词,去停留词。计
原创
264阅读
0评论
0点赞
发布博客于 4 月前

Word2Vec - gensim模块(2/3)

Word2Vec完成了从文字,句子到空间向量的映射,是计算相似度和检索常用的方法。在使用机器学习技术训练文本以前,常用来做Word Embedding。在上一篇中,给出了相似性计算的原理,本篇介绍在python环境下一个快速完成word2vec训练和使用的工具包。Get started gensimhttps://github.com/Samurais/word2vec_get_started训练构建词汇表dict将文件(doc collection)按行处理成向量corpus
原创
100阅读
0评论
0点赞
发布博客于 4 月前

Word2Vec - 余弦相似性数学原理(1/3)

判断两个文章或者句子相似程度的一个算法。根据向量坐标,绘制在空间中,求得夹角的Cos值。Cos值越接近1,则说明夹角越小,即两向量相似。余弦相似性: 通过计算两个向量的夹角余弦值来评估他们的相似度。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似。给定两个句子A: 我喜欢足球,也喜欢篮球。B: 我喜欢足球,不喜欢篮球。对句子进行分词,并统计词频分词A:我/ 喜欢/ 足球/ ,/ 也/ 喜欢/ 篮球 /。B:我/ 喜欢/ 足球/ ,/ 不/ 喜欢/ 篮球/ 。出现的所有的词语
原创
187阅读
0评论
1点赞
发布博客于 4 月前

机器学习词汇列表

入门机器学习的一个很大的困难就是掌握各种概念。本篇对这些概念做一个列表,并且会不断更新。概率随机过程马尔可夫过程隐马尔可夫模型算法监督学习/无监督学习/半监督学习/分类器朴素贝叶斯分类器RefersDEEP LEARNING GLOSSARY...
原创
93阅读
0评论
0点赞
发布博客于 4 月前

朴素贝叶斯分类器

在概率论中,贝叶斯公式是著名的定理。在机器学习里,有着广泛应用,尤其是语言类问题。本篇以简单和朴实的语言介绍这个定理及其应用。本文是翻译,原文地址:https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier贝叶斯定理简单、通用和常见。在机器学习领域,它快速、准确和可靠。尤其是处理自然语言处理问题。贝叶斯分类器就是其中之一。使用训练语料,建立特征模型,然后输入测试,贝叶斯分类器给出概率最高的结果。我们采用的算法是
翻译
68阅读
0评论
0点赞
发布博客于 4 月前

聊天机器人之实体命名标识和槽位取值的关系

在对话系统中,对NLP中的实体命名标识和NLU中的槽位取值,进行介绍。sequence-tagging可以帮助解决:实体命名和槽位取值问题。TaskDatasetExampleNERCoNLL 2003linkSlot fillingATISlinksequence-tagging 是带有目的性的从一段文字中寻找信息。实体命名寻找人名、地名、组织结构或其他专有名词。槽位取值寻找关系,问题类型或其他信息。通常,槽位取值使用模版,输出结果便于下一步在
原创
147阅读
0评论
0点赞
发布博客于 4 月前

隐马尔科夫模型和维特比算法

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。The HMM is a generative probabilistic model, in which a sequence of observable X variables is generated by a sequence of internal hidden states Z.
原创
100阅读
0评论
0点赞
发布博客于 4 月前

马尔可夫链的定义、举例和应用

马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算法编码。定义马尔可夫链是满足马尔可夫性质的随机过程。马尔可夫链描述了一种状态序列,其每个状态值取决于前面有限个状态。一阶马尔可夫过程就是下一个状态的的转移只依赖于当前状态。举例假设一个集合具有状态S[1-6], 每个状态的表示:S1 = {AA, AA},S2 = {AA, Aa}S3 = {AA, aa}S4 = {Aa, Aa}S5 = {Aa, aa}S6 = {aa, aa}.每个状态是包含两个
原创
785阅读
0评论
1点赞
发布博客于 4 月前

Word2Vec - 模型训练和计算余弦距离 (3/3)

判断两个文章或者句子相似程度的一个算法。根据向量坐标,绘制在空间中,求得夹角的Cos值。Cos值越接近1,则说明夹角越小,即两向量相似。余弦相似性: 通过计算两个向量的夹角余弦值来评估他们的相似度。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似。在上一篇文章中,给出了使用gensim的方法,如果模型通过word2vec训练好了bin格式的文件。#! /bin/bash# constantsbaseDir=$(cd `dirname "$0"`;pwd)W2V_CMD=word
原创
301阅读
1评论
2点赞
发布博客于 4 月前

Hadoop 快速开始

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。Downloadwget https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/core/hadoop-2.8.1/hadoop-2.8.1.tar.gzGithubVersion / 2.8.1
原创
55阅读
0评论
0点赞
发布博客于 4 月前

Numpy Get started - random

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。random正态分布numpy.random.randn(d0, d1, …, dn) 这个函数的作用就是从标准正态分布中返回一个或多个样本值。如果想要从非标准正态分布中产生随机样本,咋办?比如下面这个正态分布:2.5 * np.random.randn(2, 4) + 3range随机ran
原创
32阅读
0评论
0点赞
发布博客于 4 月前

实战 TensorFlow 理解机器学习之最大似然估计

最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。Maximum Likelihood Estimation for Linear Regression with Tensorflow了解似然函数最大似然算法TensorFlow线性回归的例子https://stackoverflow.com/questions/41885665/maximum-likelihood-linear-regression-tensorflowexample:#!/usr/bin/
原创
133阅读
0评论
0点赞
发布博客于 4 月前

Numpy Get started - ndarray

转载 https://wolfsonliu.github.io/archive/python-xue-xi-bi-ji-numpy.htmlNumpy 简介NumPy 是 Python 科学计算的底层包, 提供了 ndarray 等方便大规模科学计算的类和方法等. NumPy 也是 Python 数据分析所用的 Pandas 包的基础, 所以这里简要介绍一下 numpy 的基础使用以方便学习和使用 Pandas 进行生物信息学分析.NumPy 主要包括: N-dimensional array obj
转载
63阅读
1评论
0点赞
发布博客于 4 月前

N-Gram文件格式介绍 - ARPA

From: https://cmusphinx.github.io/wiki/arpaformat/Source: WikiN-Gram文件格式介绍 - ARPAStatistical language describe probabilities of the texts, they are trained onlarge corpora of text data. They can be stored in various text and binaryformat, but the comm
原创
88阅读
0评论
0点赞
发布博客于 4 月前

CoNLL 依存关系和词性标注器训练语料格式

CoNLL Shared Task data formatIntro:http://ufal.mff.cuni.cz/conll2009-st/task-description.htmlFrom: https://github.com/taolei87/RBGParser/wiki/Data-FormatSpecify input formatThe RBGParser currently supports two versions of file formats used in the CoNL
原创
83阅读
0评论
0点赞
发布博客于 4 月前

微软 Botframework Bot Emulator快速开始

Bot Emulator快速开始setup projectnpm install -g yonpm install -g generator-botbuilderyo botbuildercreate luis.ai serviceLearn bot fileLearn bot adapterInstall azure clisource ~/venv-py3/bin/activatepip install --pre azure-cli --extra-index-u
原创
47阅读
0评论
0点赞
发布博客于 4 月前

在Mac OSX上安装dynet过程遇到的问题和解决办法

很多项目依赖于dynet: https://github.com/clab/dynet安装依赖brew install cmake hgbrew install --HEAD eigen这时,eigen3被安装在 /usr/local/include/eigen3安装c++版本git clone https://github.com/clab/dynet.gitcd dynetmkdir buildcd buildcmake .. -DEIGEN3_INCLUDE_DIR=/usr/l
原创
26阅读
0评论
0点赞
发布博客于 4 月前

深度学习:调节网络超参数

使用神经网络完成分类,物体识别,序列化标注,问答,生成式对话、翻译、摘要已成为标准手段,在训练神经网络时,一个很难的地方是怎么调试网络的超参数,超参数影响了网络的收敛速度,也影响最终的结果。我们假设数据和算法都定了,数据也准备好了。这时候,在网络初始化阶段,Weights和Biases是随机初始化的。那么还剩下一些参数,比如隐含层的设计、mini batch size、learning rate。调试超参数是使用控制变量法,以下是一些参考建议:使用一个规模比较小的数据集来调试超参数在常见的规范的开放数
原创
100阅读
1评论
0点赞
发布博客于 4 月前

贝壳智能客服中的数据建设

以下文章来源于贝壳智搜 ,作者智搜小贝壳数据是算法的基础,贝壳智能客服在长期的数据建设中积累了一些让数据建设更加科学合理的方法。目录一、背景二、标准问和相似问2.1 定义2.2 整体生产流程2.3 用法三、数据挖掘流程3.1 标准问生产流程3.2 相似问生产流程四、相似问挖掘实践4.1 数据增强--同义词替换4.2 相似度–cos相似度4.3 聚类–KMeans/DBSCAN4.4 k近邻4.5 生成式--seq2seq+attention/SLCVAE4.6 算法对比五、数据效果预估六、总结与展望
转载
245阅读
0评论
0点赞
发布博客于 4 月前

聊天机器人 2020

目录聊天机器人的应用效果不敢苟同 A1需要经营 A2某招聘网站关于“AI训练师”职位人工智能的瓶颈成分需要明确的 A3比较合理的 A4参考文章聊天机器人的应用效果大概在两年前,我曾回顾过去为企业开发聊天机器人的一些体会,整理为一篇深入思考的文章 《聊天机器人 2019》。现在已经到了2020年,时间如梭,现在企业大量使用机器人客服、外呼机器人和内部智能问答知识库;知识图谱和深度学习等加快在企业软件中应用,可以说,聊天机器人的市场在快速成长。那么市场成长的速度究竟怎么样?其实是要消费者说了算,因为企业
原创
591阅读
1评论
2点赞
发布博客于 4 月前

聊天机器人对话模板:招聘机器人、天气查询、活动通知、寒暄等

对话模板本开源库提供多个聊天机器人 对话模板 项目。https://github.com/chatopera/chatbot-samples基于这些源码程序,您可以:快速掌握 聊天机器人开发,实现智能问答,智能客服等应用;以对话模板为脚手架,学习最佳实践,开发多轮对话;快速掌握 聊天机器人的系统集成。开始阅读前,请完成:安装 多轮对话设计器。模板目录程序语言位置功能GuessNumberen_USprojects/GuessNumber小游戏
原创
530阅读
0评论
1点赞
发布博客于 4 月前

充分利用聊天机器人:3个常见误解

本文在原文基础上略有修改 不代表原作者观点聊天机器人在过去的一年中被广泛采用,并且其增长没有丝毫放缓的迹象:Gartner最近的一项研究发现,到2022年,将有70%的白领每天与对话平台进行互动。在大流行期间,品牌必须比以往更频繁地向客户传达更多的信息–随着客户服务座席的分散,聊天机器人在这段时间内提供及时,高效的交流尤为重要。但是,尽管聊天机器人得到了广泛的使用,但仍然被许多人误解。考虑到它们的相对新颖性,相对有限的当前用途以及科幻电影中的描写,也就不足为奇了。如果企业要完全意识到AI驱动的对话消
转载
98阅读
0评论
0点赞
发布博客于 4 月前

用聊天机器人假扮人类

日前看到新闻,某企业用聊天机器人假扮人类,蒙骗消费者。使用聊天机器人服务消费者没有错,但是现在这样用,技术明显是跑在法律前面了,至少在中国还没有立法,禁止机器人假扮人类。2019年,美国加州新法生效,要求各类用途聊天机器人必须说明自己是机器人。用聊天机器人实现自动化、智能化、个性化的服务是很好的,但是当消费者询问:你是谁,你是机器人吗?一定要明确,“我是聊天机器人”。不论是打电话、发短信、还是在社交网络上发言。违法的回答要面临罚款。在中国,还没有明确看到法律条文,或者目前笔者还不知道。为什么美国要
原创
360阅读
0评论
0点赞
发布博客于 5 月前

聊天机器人之同义变换

本文通过 DataFunTalk 社区发布的《同义变换在百度搜索广告中的应用》 整理而来。本文所介绍同义词处理,同义转换,因为同样适用于聊天机器人中自然语言处理,本专栏收录/原创文章均与聊天机器人相关,故有此标题。导读:关键词匹配位于整个搜索广告系统的上游,负责将query和keyword按照广告主要求的匹配模式连接起来。该问题面临着语义鸿沟,匹配模式判定和可扩展性方面的挑战。在本文,我们会就同义变换这个主题展开讨论,讲述如何用数据驱动的方式做同义变换,如何将知识推理融入到变换中,以及如何用这些技术解
转载
214阅读
0评论
0点赞
发布博客于 5 月前

聊天机器人闲聊语料 - 1

网上整理若干闲聊对话,适用于机器人寒暄等问答。本语料包含 6,897 个问答对的中文闲聊语料。下载地址:https://github.com/chatopera/chatbot-samples/blob/master/projects/闲聊/faq.json使用指南:快速生成聊天机器人。部分数据{ "docId": "CHIx_zv-p2h5cW", "categories": [ "闲聊" ], "enabled": true, "post": "你觉得我很美吗?",
原创
390阅读
0评论
1点赞
发布博客于 5 月前

智能聊天机器人的技术综述

本文转载,原文地址。在转载过程中,资源和开放数据有更新,不代表原作者观点。目录摘要研究背景国内外研究现状对比工程要求及分类实现需求工程分类常见技术模型Encoder-decoder加解密模型Hierarchiacal Recurrent Encoder-Decoder分级卷积加解密模型Bidirectional HRED双向分级卷积加解密模型Word embedding词嵌入Attention注意力机制模型评估方法公开资源模型框架Dialogflow腾讯智能对话平台 TBPChatoperaLangua
转载
874阅读
0评论
2点赞
发布博客于 5 月前

使用 TripleNet, TensorFlow 训练基于检索的聊天机器人

给定上下文 (context), 查询条件 (query) 和 回复 (reply),判断该 reply 是否适合该上下文,作为一个合格的答案。We consider the importance of different utterances in the context for selecting the response usually depends on the current query. In this paper, we propose the model TripleNet to ful
原创
130阅读
0评论
0点赞
发布博客于 5 月前

基于深度学习的聊天机器人在网易严选智能客服中的应用

目录业务概要模型构建KBQA模块 — NER模型语聊模块 — 生成模型模型部署总结作者业务概要随着自然语言处理技术的发展,智能客服作为电商领域内重要的业务场景,近年来受到的重视日益增加。因为在购物的全链路过程中,用户碰见问题或疑惑时都可能会转向客服,去寻求一些咨询或者支持。客服精准有效的回复,不仅会直接影响到用户的体验,也会对购买转化产生正面影响。如:售前场景下,用户会针对感兴趣的商品或促销活动进一步提问售后场景下,用户会询问与退换货、邮费、物流相关的问题在网易严选业务实际运转时,会产生和沉淀
转载
167阅读
0评论
0点赞
发布博客于 5 月前

聊天机器人之知识图谱 Freebase 简介

Freebase是一个巨大的,免费的事实数据库,组织成三元组的形式。Freebase的实体和关系都有类别,并且类别和关系的词典类似。每个实体有一个内部的id和一些可选的名字集来在文本中引用该实体。简介FreeBase: Freebase(Bollacker et al.,2008)是一个巨大的,免费的事实数据库,组织成三元组的形式(subject Entity,Relationship,object Entity)。Freebase的实体和关系都有类别,并且类别和关系的词典类似。每个实体有一个内部的id
原创
1038阅读
10评论
0点赞
发布博客于 5 月前

Trie Tree算法概述及Python实现

Trie Tree广泛的使用与分词和检索算法中,在实现聊天机器人时,常用来作为高级数据的存储,因为其存储和搜索效率较高。本文给出数据定义和工作原理,python的实现。数据结构class Node(): static = 0 def __init__(self): self.fail = None self.next = [None]*KIND self.end = False self.word = None Node.static += 1分词原理(1) 从根结点开始一
原创
109阅读
0评论
0点赞
发布博客于 5 月前

聊天机器人之语音识别科大讯飞 Node.js SDK

目录但是 ...使用示例程序贡献代码讯飞提供的原始SDK资源链接在做聊天机器人的过程中,人最友好的输入还是通过语音,这几年,深度学习使得ASR服务的准确度大大提升。针对中文,科大讯飞的服务做的不错。但是 …科大讯飞没有提供Node.js SDK, 我就造了这个轮子。目前仅支持 linux64,目前仅支持科大讯飞听写接口。# download xfyun sdks from official portal, a zip file like here.sudo unzip Linux_voice
原创
586阅读
2评论
0点赞
发布博客于 5 月前

德勤助力康宝莱上线聊天机器人服务内部问答

大家这个月的工资都到账了吗?个税起征点提高了,工资是不是涨了不(几)少(块)?接下来,你可能会产生“新一千零一问”:拿到手的工资是怎么算出来的?到底交了多少税?......自己算,算不明白。问HR小姐姐?每个人都要提问,小姐姐回答不过来。使用德勤聊天机器人“小勤人”,就能理解得到回复。企业政策是企业内部的重要知识资料,通常包括人事政策、税务政策、出差政策、合规政策、报销政策、财务管理政策等。伴随企业规模的扩大、员工数量的增加,企业在政策上的投入往往成倍增长。如何及时回答员工关于各类政策
原创
97阅读
0评论
0点赞
发布博客于 5 月前

智能客服、聊天机器人的应用和架构、算法分享和介绍

Chatbot Catalog: Customer Service智能客服、聊天机器人的应用和架构、算法分享和介绍Github https://github.com/chatopera/chatbot.catalog.customer-service目录聊天机器人汇总对话管理知识图谱智能客服知识库阿里巴巴小蜜非技术推广其他天猫蚂蚁闲鱼云问(拼多多、当当)携程去哪儿京东Uber58 同城饿了么美团滴滴瓜子苏宁贝壳腾讯聊天机器人对话智能:国际视角,国内形势及案例学习实录分享 | 计算未来轻沙
原创
1313阅读
0评论
2点赞
发布博客于 5 月前

做聊天机器人平台就是赌博

最开始并没有操作系统,软件运行时都是竞争的:直接请求硬件资源,造成竞争。而且多人用一个计算机时,这种情况更容易发生。然后人家开始做操作系统,你觉得不可能,那怎么可能呢。后来操作系统使用很麻烦,面对冷冷的命令行,然后人家开始做图形用户界面,你觉得不可能,那怎么可能呢。后来有了图形用户界面,但是办公软件不好用,有没有通用的办公软件,适应大家商务上的需求呢?那就是 123 Word, Power Point, Excel, 你觉得不可能,那怎么可能呢。后来电脑不方便携带,如果能把计算机放在兜里就好了,你觉得
原创
4122阅读
0评论
9点赞
发布博客于 5 月前

一个可以使用自己语料进行训练的聊天机器人开源项目

目录背景关于语料的说明seq2seq版本代码执行顺序seqGAN版本代码执行顺序参考代码和文献建议环境已更新功能清单版本路线图背景自定义语料训练聊天机器人,可以用于智能客服、在线问答、智能聊天等场景。目前包含seq2seq、seqGAN版本和tf2.0版本。https://github.com/chatopera/chatbot-seq2seq后续计划更新pytorch版本,欢迎大家实践交流。关于语料的说明以小黄鸡的语料为例子,地址corpus-小黄鸡其它语料:心理咨询问答语料库保险行业
原创
1025阅读
0评论
1点赞
发布博客于 5 月前

聊天机器人之文本聚类分析

目录文本聚类聚类算法Affinity propagation算法概述特点K-means算法概述特点Chinese Whispers计算过程优化聚类API设计参考资料文本聚类文本聚类(Text Clustering),是依据同类文档的相似度较大,而不同类的文档相似度较小的原则,使用无监督的机器学习方法,将同类文档从目标语料库聚集到一簇的任务。聚类不需要训练过程,也不需要预先对文档进行手工标注类别,因此具有一定的灵活性和较高的自动化处理能力,是对文本信息进行有效的组织、摘要和导航的重要手段。使用场景:
原创
378阅读
0评论
0点赞
发布博客于 5 月前

平安银行智能金融在客服机器人中台的落地实践

目录大纲业务背景文本客服机器人演进客服机器人小安 1.0客服机器人小安 2.0客服机器人小安 3.0知识图谱的问答总结作者介绍大纲客服机器人在各行各业应用的非常广泛,通过AI赋能大幅度提高了人均解决问题的效果,各家公司都在应用客服机器人来提高自动化程度,降低客服的成本。传统行业因为历史包袱问题,存在着大量的采购产品。为了应对快速扩展的业务场景,如何重新设计客服机器人架构从而实现机器人的快速创建和应用是一件非常重要的事情,这就促进了客服机器人中台的思考和实践。主要内容:1、金融业务背景介绍2、客服
转载
379阅读
0评论
0点赞
发布博客于 5 月前

浅析携程智能客服机器人实现

转载 原文 携程度假智能客服机器人背后是这么玩的 @ 2019-11-07目录背景智能客服分类自然语言理解技术错别字纠正意图识别发现新意图槽位抽取对话管理系统智能客服平台结语作者简介参考资料背景随着人工智能的发展,基于自然语言对话的人机交互技术愈发成熟,应用场景也越来越多。智能客服是聊天机器人在客服领域的一个应用,服务于客人以及相关的客服人员。本文将介绍聊天机器人在旅游场景下的主要技术和应用。当前度假的聊天机器人主要用于C端(客户端)面向客人,以及客服端辅助客服的两个角色。面向客服端的是智能客服
转载
356阅读
0评论
1点赞
发布博客于 5 月前

最好的客户服务聊天机器人的五个特点

转载 原文地址@ 2018-09-25 09:35:37 作者:老秦 来源:CTI论坛目录概述五个特点目标个性解决方案学习与人类合作概述聊天机器人是客户服务领域的一项热门新技术,它们的崛起并没有放缓。事实上,高德纳(Gartner)不仅声称到2020年将有超过50%的大中型企业部署这些服务,而且到2020年,85%的客户服务交互将由它们处理。2020年将比我们意识到的更早到来,有了这些预测,人们会认为聊天机器人被视为客户服务的积极方向。还不至于如此。事实是,聊天机器人的一些观点并不引人注
转载
235阅读
0评论
0点赞
发布博客于 5 月前

聊天机器人:企业应用价值分析

本文转载,原创 埃森哲 展望技术|聊天机器人 2017目录摘要展望聊天机器人技术信息供给型企业生产型交易处理型设备控制型聊天机器人的前世今生为何企业不愿和机器聊天?如何为未来投资机器聊天?第一,确定机器人的使用领域和类型第二,设定切实的回报预期第三,制定合理的机器人部署方式原文作者摘要聊天机器人不再是简单的用户应答工具,而是提供信息、完成任务、处理交易的助手,在企业运营中更是大有用武之地。展望聊天机器人技术根据埃森哲研究,全球多家企业的首席信息官和首席技术官认为,聊天机器人(chatbot)将在未
转载
329阅读
0评论
1点赞
发布博客于 6 月前

《设计聊天机器人》翻译 #1

《设计聊天机器人》翻译 #1聊天机器人是软件的未来那么,什么是机器人?机器人革命和进化机器人应用的阶段不是所有的机器人都是相同的结语聊天机器人是软件的未来机器人将以与网络和移动革命相同的方式升级软件行业。历史告诉我们,在这些革命中出现了巨大的机遇:我们已经看到Uber,Airbnb和Salesforce等成功公司是凭借新技术,提升用户体验和重建分销渠道而创建的。在本书的最后,我希望您能更好地抓住这些机会,为这次机器人革命设计一款出色的产品。我们所生活的2017年充满了聊天机器人 - 我早上醒来并要求A
翻译
180阅读
0评论
0点赞
发布博客于 6 月前

Chatbot 聊天机器人页面交互设计

目录一、背景:二、设计要点:三、相关交互细节四、总结一、背景:最近在做源码智投app的机器人Neo的原型设计,是一个chatbot聊天机器人。整理了一下关于聊天机器人设计的一些心得。这是Neo的第一个版本。Neo通过问答的方式了解用户的基本信息、投资偏好及投资目的等信息,用户通过直接文字回复和点击选项进行回复对话,最终产出供用户参考的资产配置方案。二、设计要点:1、以问答的方式开始与用户互动,不要让用户一进来就不知道该干什么。机器人进来跟用户寒暄之后需要跟用户进行有效互动,让用户知道接下来能干
转载
270阅读
0评论
1点赞
发布博客于 6 月前

聊天机器人:问答系统类型介绍

目录聊天机器人:让机器更好的服务人问答系统类型介绍基于事实的问答系统基于常见问题集的问答系统开放域的问答系统总结聊天机器人:让机器更好的服务人新的一天开始的时候,我们就会依赖机器,以前机器是冷冰冰的,它不会“主动的”做事情。也不能很好的理解人的意图。自行车作为人类伟大的发明,在电子计算机面前,就像是猿猴之于人类。我们的身体早已经从树上下来,但是我们的思想并不一定,感谢那些长久的想将人类举起的人,他们是后文提及的一些名字,因为今天所发生的一切,要得益于他们的坚持和谦逊。在上世纪50年代,信息论之父香农就
原创
677阅读
0评论
0点赞
发布博客于 6 月前